За счет чего у ферромагнетика появляется остаточная намагниченность
За счет чего у ферромагнетика появляется остаточная намагниченность
Магнитная проницаемость μ ферромагнетиков зависит от напряженности внешнего магнитного поля (рисунок 5.4). Характер этой зависимости для железа следующий: при малых напряженностях намагничивающего поля магнитная проницаемость резко возрастает по мере увеличения Н, достигая максимума. При дальнейшем увеличении H магнитная проницаемость снова уменьшается.
Рисунок 5.4 – Зависимость намагниченности ферромагнетика от напряженности магнитного поля
Ферромагнетики обладают остаточным магнетизмом, т.е. они могут сохранять состояние намагниченности и при отсутствии намагничивающего поля. Остаточный магнетизм является результатом магнитного гистерезиса, который наблюдается при перемагничивании ферромагнетика и проявляется в том, что изменение намагниченности ферромагнетика в переменном магнитном поле отстает от изменения напряженности намагничивающего поля («гистерезис» в переводе на русский язык значит «отставание»).
Рассмотрим процесс намагничивания ферромагнетика внешним полем более подробно. Намагничивание ферромагнитного образца, имеющего нулевой результирующий магнитный момент в отсутствии внешнего поля, происходит за счет изменения формы и ориентации доменов. При нулевом поле суммарному объему доменов, намагниченных в одном направлении, соответствует равный ему объем доменов, намагниченных в противоположном направлении (рисунок 5.5, а), и поэтому результирующая намагниченность равна нулю. Это равновесие, однако, нарушается при наложении внешнего магнитного поля .
Рисунок 5.5 – Процесс намагничивания ферромагнетика:
а – при отсутствии внешнего намагничивающего поля; б – в слабом поле;
в – поворот намагниченности доменов по направлению поля; г – зависимость намагниченности от напряженности внешнего поля
Весь процесс намагничивания ферромагнетика во внешнем поле можно разделить на несколько этапов.
В слабых полях наблюдается увеличение объема «выгодно» расположенных относительно внешнего поля доменов за счет доменов с «невыгодной» ориентацией (рисунок 5.5,б). Если внешнее поле снять, то домены восстановят исходную форму и размеры. Эти процессы называют обратимым смещением границ доменов. На кривой зависимости намагниченности от напряженности поля (рисунок 5.5,г) этот участок приблизительно соответствует пологой части I кривой намагничивания.
Если внешнее поле продолжает увеличиваться, то происходят необратимые процессы, которые возникают за счет препятствий, создаваемых дефектами кристаллической структуры. Чтобы преодолеть их действие, граница домена должна получить от внешнего поля достаточно большую энергию. Если снять внешнее поле, то дефекты помешают границам домена вернуться в исходное положение. Этот этап носит название необратимого смещения доменных границ и на рисунке 5.5,г он отвечает участку кривой II. На этом участке кривая намагничивания имеет наибольшую крутизну.
В области высоких полей намагничивание происходит за счет второго механизма намагничивания – поворота намагниченности доменов по направлению поля (рисунок 5.5,в). При этом намагниченность выходит на насыщение (техническое). Это процесс вращения, отмеченный на рисунке 5.5,г римской цифрой III.
После этого наблюдается очень медленный рост намагниченности, вызванный так называемым парапроцессом, или истинным намагничиванием. Парапроцесс наблюдается в сильных полях и заключается в достижении параллельной ориентации спинов (на рисунке 5.5, г это область IV). Дело в том, что строго параллельное расположение спиновых моментов в домене, вызываемое обменными силами, имеет место лишь при очень низких температурах, близких к абсолютному нулю. При повышении температуры за счет тепловой энергии упорядоченность в расположении спинов несколько нарушается. Однако внешнее поле подавляет дезориентирующее влияние теплового движения и возвращает «неправильно» ориентированные спины к параллельной ориентации. Этим достигается эффект приращения намагниченности. Роль парапроцесса возрастает с повышением температуры.
В отличие от истинного намагничивания, возрастание индукции за счет процессов смещения доменных границ и вращения магнитных моментов часто называют техническим намагничиванием ферромагнетика. Основные стадии технического намагничивания схематично показаны на рисунке 5.6.
Рисунок 5.6 – Схема ориентации спинов в доменах при техническом намагничивании ферромагнетика
Если после достижения намагниченности насыщения отключить внешнее поле (Н = 0), то ферромагнетик не размагничивается полностью, а сохраняет остаточную намагниченность JR. Для достижения нулевой намагниченности требуется приложить размагничивающее поле Hc, называемое коэрцитивной силой.
Полный цикл перемагничивания ферромагнитного образца представляется петлей гистерезиса (рисунок 5.7). Характерной особенностью этой кривой является то, что она наглядно показывает отставание процесса размагничивания от уменьшающегося намагничивающего поля. Это отставание показывает, что энергия, приобретенная ферромагнетиком при намагничивании, не полностью отдается при размагничивании, а часть ее теряется. Величина магнитной энергии, потерянной в течение полного цикла, пропорциональна площади, охватываемой петлей гистерезиса. Потери магнитной энергии связаны, главным образом, с преодолением препятствий движению доменных границ, т.е. с величиной коэрцитивной силы Hc, которая чрезвычайно чувствительна к структуре ферромагнетика: она резко возрастает с уменьшением размера зерна, при наличии искажений решетки, дислокаций, частиц других фаз и других факторов, препятствующих смещению доменных границ. Величина коэрцитивной силы Hc может меняться от сотен тысяч до нескольких единиц ампер на метр (А/м).
Рисунок 5.7 – Петля магнитного гистерезиса:
ОА – кривая начального намагничивания; A, D – точки насыщения;
HS, JS – напряженность и намагниченность насыщения; Jr – остаточная намагниченность; Hс – задерживающая, или коэрцитивная сила
Для того чтобы полностью размагнитить образец, к нему надо приложить противоположное по знаку поле напряженностью Нс.
Дальнейшее увеличение отрицательного поля приведет в точке D к намагниченности до насыщения Js в другом направлении.
Уменьшение поля до нуля и повторное увеличение положительного значения H приведет к замкнутой, симметричной относительно точки О кривой, которая и является петлей гистерезиса.
Таким образом, видно, что намагниченность ферромагнетика не является однозначной функцией напряженности намагничивающего поля, а зависит еще от предшествующего состояния намагниченности: одной и той же напряженности поля H1 будут соответствовать три значения J, обозначенные цифрами 1, 2, 3.
Для различных значений H можно получить семейство петель гистерезиса. На рисунке 5.8 показано такое семейство в координатах В – Н. Петля гистерезиса при индукции насыщения Вs называется предельной.
Рисунок 5.8 – Семейство петель гистерезиса
Вид петли гистерезиса для разных ферромагнетиков, в зависимости от их химического и фазового составов и технологии изготовления, различен (рисунок 5.9). Площадь петли гистерезиса пропорциональна затрате энергии на однократное перемагничивание ферромагнитного образца. Материалы с прямоугольной и квадратной формой петли гистерезиса используют в элементах памяти электронных схем.
Рисунок 5.9 – Основные разновидности петель гистерезиса:
а – пологая; б – крутая; в – прямоугольная; г – квадратная
Таким образом, кривая, описывающая зависимость намагниченности или индукции от напряженности внешнего магнитного поля J = f (H) или B = f (H), является весьма важной характеристикой магнитных материалов, поскольку она позволяет рассчитать энергетические потери в устройствах, где эти материалы используются. По виду этой петли все ферромагнетики подразделяются на две группы:
В тонких магнитных пленках можно организовать упорядоченное движение доменов и даже отдельных фрагментов доменной границы, создавая тем самым управляющие магнитные поля. На этом принципе основаны запоминающие устройства с цилиндрическими магнитными доменами и ряд магнитооптических приборов для управления световым лучом. На рисунке 5.10 показаны изолированные цилиндрические магнитные домены (ЦМД), созданные в тонкой магнитной пленке. Емкость отдельного ЦМД-элемента может достигать 10 5 бит. В отсутствие внешнего магнитного поля смещения в ЦМД-материалах доменная структура имеет вид либо ЦМД-решетки (а), либо полосовой структуры (б).
Рисунок 5.10 – Доменная структура цилиндрических магнитных доменов
© ФГБОУ ВПО «Уфимский государственный нефтяной технический университет»
Редакционно-издательский центр
Отдел допечатной подготовки и программно-методического обеспечения
Уфа 2014
Учебники
Журнал «Квант»
Общие
Ферромагнетизм
Как указано выше, ферромагнетики — это вещества, у которых магнитная проницаемость μ очень велика (μ»1). Кроме того, ферромагнетики обладают еще и другими свойствами, существенно отличающими их от диа- и парамагнетиков. Особые свойства ферромагнетиков обусловливаются двумя факторами: 1) наличием нескомпенсированных магнитных моментов в недостроенных электронных оболочках; 2) особой кристаллической структурой ферромагнетиков.
Специальные опыты, проведенные де Гаазом, показали, что ферромагнетизм обусловлен спиновым магнитным моментом электронов, а не их орбитальным движением. Причем в этих веществах образуются целые области (домены), в которых нескомпенсированные спиновые моменты ориентированы в одном направлении. При отсутствии магнитного поля домены ориентированы хаотически, а при наложении внешнего магнитного поля ориентируются вдоль него (рис. 1).
Этим объясняются свойства ферромагнетиков:
1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;
2) для каждого вещества имеется определенная температура (точка Кюри), выше которой ферромагнитные свойства исчезают и ферромагнетик превращается в обычный парамагнетик;
3) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 2).
Вначале μ растет с увеличением \(
B_0\) затем, достигая максимума, начинает уменьшаться, стремясь в случае сильных полей к 1 (при значении магнитной индукции \(
B’_0\) все домены ориентированы вдоль поля и при дальнейшем увеличении \(
B_0\) магнитная индукция \(
B_1\) в образце перестает изменяться, а \(
B_0\) увеличивается и магнитная проницаемость уменьшается;
4) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 3 показано, как изменяется магнитная индукция \(
B\) в стали с изменением внешнего поля \(
B_0\). Для сравнения: парамагнетик намагничивается до насыщения в полях с \(
5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 4), а затем уменьшать ток в соленоиде, а вместе с ним и \(
B_0\), то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда \(
B_0 = 0\) (ток в соленоиде выключен), индукция будет равна \(
B_r\) (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением \(
B_
B_0\) можно намагнитить стержень до насыщения (точка А’).
B_0\) до нуля, получают опять постоянный магнит, но с индукцией \(
-B_r\) противоположного направления. Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция \(
B_
B_0\), снова намагничивают стержень до насыщения (точка А).
Таким образом, при намагничивании и размагничивании ферромагнетика индукция \(
B_0\). Это отставание \(
B_0\) называется явлением гистерезиса. Изображенная на рисунке 4 кривая называется петлей гистерезиса. Величины \(
\mu_m\) определяют область применения ферромагнетиков для практических целей. Ферромагнетики с узкой петлей гистерезиса (малое значение \(
B_
B_
6) процесс намагничивания ферромагнетиков сопровождается изменением их линейных размеров и объема. Это явление называется магнитострикцией.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C.333- 335.
Намагничивание и магнитные материалы
Возникновение намагниченности в веществе при помещении его в магнитное поле объясняется процессом постепенной преимущественной ориентации магнитных моментов циркулирующих в нём микротоков в направлении поля. Подавляющий вклад в создание микротоков в веществе вносит движение электронов : спиновое и орбитальное движение связанных с атомами электронов, спиновое и свободное движение электронов проводимости.
Диамагнетики и парамагнетики относятся к материалам со слабыми магнитными свойствами. Значительно более сильный эффект намагничивания наблюдается у ферромагнетиков.
Ферромагнетизм наблюдается у кристаллов переходных металлов: железа, кобальта, никеля и у ряда сплавов.
При относительно небольшой напряженности поля (участок I) происходит быстрое возрастание намагниченности преимущественно из-за увеличения размеров доменов, имеющих ориентацию намагниченности в положительной полусфере направлений векторов напряженности поля. Одновременно пропорционально сокращаются размеры доменов в отрицательной полусфере. В меньшей степени изменяются размеры тех доменов, намагниченность которых ориентирована ближе к плоскости, ортогональной вектору напряженности.
При дальнейшем увеличении напряженности преобладают процессы поворота векторов намагниченности доменов по полю (участок II) до достижения технического насыщения (точка S). Последующему возрастанию результирующей намагниченности и достижению одинаковой ориентации всех доменов по полю препятствует тепловое движение электронов. Область III близка по характеру процессов к парамагнетикам, где увеличение намагниченности происходит из-за ориентации немногих спиновых магнитных моментов, дезориентированных тепловым движением. С увеличением температуры дезориентирующее тепловое движение усиливается и намагниченность вещества уменьшается.
Снижение температуры ниже точки Кюри вновь возвращает материалу магнитные свойства: доменную структуру с нулевой результирующей намагниченностью, если при этом отсутствовало внешнее магнитное поле. Поэтому разогрев изделий из ферромагнитных материалов выше точки Кюри используют для их полного размагничивания.
Кривая начального намагничивания
Обратимые изменения наблюдаются на малом начальном отрезке участка I кривой намагничивания (зона Релея) при малых смещениях доменных стенок и на участках II, III при повороте векторов намагниченности в доменах. Основная часть участка I относится к необратимому процессу перемагничивания, который в основном определяет гистерезисные свойства ферромагнитных материалов (отставание изменений намагниченности от изменений магнитного поля).
Петлей гистерезиса называют кривые, отражающие изменение намагниченности ферромагнетика под воздействием циклически изменяющегося внешнего магнитного поля.
При испытаниях магнитных материалов петли гистерезиса строятся для функций параметров магнитного поля В (Н) или М (Н), которые имеют смысл результирующих параметров внутри материала в проекции на зафиксированное направление. Если материал предварительно был полностью размагничен, то постепенное увеличение напряженности магнитного поля от нуля до Hs дает множество точек начальной кривой намагничивания (участок 0-1).
Магнитный гистерезис: 1 – кривая начального намагничивания; 2 – предельный гистерезисный цикл; 3 – кривая основного намагничивания; 4 – симметричные частные циклы; 5 – несимметричные частные циклы
Частные несимметричные гистерезисные циклы образуются, если начальная точка не находится на кривой основного намагничивания при симметричном изменении напряженности поля, а также при несимметричном изменении напряженности поля в положительном или отрицательном направлении.
Классификация магнетиков: диамагнетики, парамагнетики и ферромагнетики
Все вещества в зависимости от выраженности магнитных свойств делятся на сильномагнитные и слабомагнитные. Магнетики можно разделить по видам механизма, вызывающего намагничивание.
Что такое диамагнетики
Диамагнетики являются слабомагнитными веществами: они не магнитятся, если на них не действует магнитное поле.
Если парамагнетики внести во внешнее магнитное поле, то в их атомах начинается движение электронов, порождающее ориентированный круговой ток.
Круговой ток, в свою очередь, порождает магнитную индукцию, дополнительную по отношению к внешним полям. Вектор этой индукции направлен против внешнего поля. Силу воздействия внешнего поля можно найти так:
Диамагнетики бывают следующих видов:
Ниже представлена схема, которая наглядно показывает данную зависимость в случае с классическими диамагнетиками (в слабом магнитном поле):
Что такое парамагнетики
Если направления векторов B → и p m → совпадут, то величина энергии будет минимальной.
Если мы внесем парамагнетик во внешнее магнитное поле, то магнитные моменты получат преимущественную ориентацию в направлении поля, соответствующую распределению Больцмана.
Иными словами, вещество намагничивается: дополнительное поле усиливается за счет совпадения с внешним. При этом угол между векторами остается неизменным.
Смена ориентации магнитных моментов по распределению Больцмана связана со столкновениями и взаимодействием атомов между собой. В отличие от диамагнетиков, магнитная восприимчивость парамагнетиков меняется в зависимости от температуры в соответствии с законом Кюри или законом Кюри-Вейсса.
При совпадении частоты прецессии с частотой переменного магнитного поля момент сил, создаваемый этим полем, будет либо постоянно увеличивать указанный угол, либо постоянно уменьшать. Это называется явлением парамагнитного резонанса.
Если магнитное поле слабое, то намагниченность в парамагнетиках будет пропорциональна напряженности поля и может быть выражена следующей формулой:
Что такое ферромагнетики
В отличие от двух перечисленных выше магнетиков, ферромагнетики являются сильномагнитными веществами.
Ферромагнетики – это вещества с высокой магнитной проницаемостью, зависящей от внешнего магнитного поля.
Данные вещества могут иметь так называемую остаточную намагниченность. Выразить зависимость восприимчивости ферромагнетиков от напряженности внешнего магнитного поля можно с помощью функции. Она представлена на схеме ниже:
Намагниченность ферромагнетика имеет пределы насыщения. Это указывает нам на природу возникновения намагниченности в таких веществах: она образуется путем смены ориентации магнитных моментов вещества. Для ферромагнетиков также характерно такое явление, как гистерезис.
В магнитном отношении все ферромагнетики делят на мягкие и жесткие. Первые из них имеют высокую магнитную проницаемость и способны легко намагничиваться и размагничиваться. Они имеют широкое применение в электротехнических приборах, основанных на работе переменных полей (например, трансформаторов). Жесткие ферромагнетики имеют сравнительно небольшую проницаемость и намагничиваются трудно. Их используют при производстве постоянных магнитов.
Условие: на схеме выше (рис. 3 ) показана кривая намагниченности ферромагнетика. Постройте кривую, выражающую зависимость B ( H ) и определите, возможно ли насыщение для магнитной индукции. Поясните свой вывод.
Мы знаем отношение вектора магнитной индукции к вектору намагниченности.
Из этого можно сделать вывод, что насыщения кривая B ( H ) иметь не может. Создадим график зависимости напряженности внешнего поля от индукции магнитного поля в соответствии с рисунком выше. Мы получили схему, называемую кривой намагничивания:
Ответ: кривая индукции не имеет насыщения.
Взяв высокие температуры и небольшие поля, получим следующее:
Возьмем нужную формулу и подставим в нее полученное значение:
В итоге формула намагниченности будет выглядеть так:
Поскольку модуль намагниченности связан с модулем вектора ( J = χ H ), мы можем записать результат:
За счет чего у ферромагнетика появляется остаточная намагниченность
Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:
Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ Рис. 2
2) собственным вращением (спином) электронов (спиновой магнитный момент) (рис. 2).
Для любознательных. Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.
Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей [1], созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.
Подробнее механизм намагничивания диамагнетиков описан здесь: Слободянюк А.И. Физика 10. §13.3 Типы магнетиков.
Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).
Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).
В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).
Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.
Ферромагнетики
Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3 ).
Само название этого класса магнитных материалов происходит от латинского имени железа — Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева — кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.
Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.
Если поместить ферромагнетик во внешнее магнитное поле B0, то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.
Свойства ферромагнетиков
1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;
2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900°C;
3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B0:
4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).
Это объясняется тем, что вначале с увеличением B0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B’0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B0 магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):
5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B0, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B0 = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).
При дальнейшем увеличении B0 можно намагнитить стержень до насыщения (точка А’).
Уменьшая теперь B0 до нуля, получают опять постоянный магнит, но с индукцией –Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B0 станет равной Boc. Продолжая увеличивать я B0, снова намагничивают стержень до насыщения (точка А).
Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B0. Это отставание называется явлением гистерезиса. Изображенная на рисунке 8 кривая называется петлей гистерезиса.
Гистерезис (греч. ὑστέρησις — «отстающий») — свойство систем, которые не сразу следуют за приложенными силам.
Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах — реле, трансформаторах, магнитопроводах и др.