Барьер искрозащиты для чего нужен

Основы искробезопасности цепей

Барьер искрозащиты для чего нужен

Возникновение искры или нагрев какого-либо элемента на взрывоопасных объектах может привести к необратимым последствиям. Для безопасности производства, хранения и транспортировки нефтепродуктов или горючих газов необходимо устанавливать дополнительное оборудование, обеспечивающее взрывозащиту. Для искробезопасности электрических цепей применяются барьеры искрозащиты ОВЕН Искра.

Во взрывоопасных зонах необходимо создавать условия, неспособные вызвать воспламенение горюче-смазочных материалов, т.е. помимо применения оборудования в искробезопасном исполнении должны применяться искробезопасные цепи.

Искробезопасная электрическая цепь i – вид взрывозащиты, основанный на ограничении энергии искры, которая может возникнуть внутри оборудования или проводки, находящихся во взрывоопасной зоне, например, на объектах с горючими газами. Требования к искробезопасному (ex ia) оборудованию и обеспечению искробезопасности прописаны в ГОСТ 31610.11 (IEC 60079-11:2011).

Смесь газа (5 – 15 %) с воздухом может взорваться только в случае возникновения искры, способной «поджечь» эту взрывоопасную смесь. Если энергии искры будет недостаточно, то взрыва не произойдет. Для удержания энергии искры на уровне, недостаточном для воспламенения взрывоопасной смеси, необходимо ограничивать электрические параметры (напряжение, ток, емкость и индуктивность) в цепи «датчик – прибор».
У датчиков в искробезопасном исполнении и у барьеров есть собственные пороговые значения напряжения (Ui, Uo), тока (Ii, Io), индуктивности (Li, Lo), емкости (Ci, Co) (рис.1), которые должны находиться между собой в определенных соотношениях. Кроме этого, следует учитывать, что соединительный кабель также имеет емкость и индуктивность (Lc, Cc).

Датчики давления или температуры устанавливаются во взрывоопасной зоне, а вторичный прибор – измеритель, терморегулятор, контроллер и т.п. – должен располагаться во взрывобезопасной зоне. Электрические параметры датчиков ограничивает производитель, то есть датчик в исполнении ex ia не может служить причиной мощной искры. Но для искробезопасной цепи этого недостаточно – нужно, чтобы искра не имела возможности проникнуть во взрывоопасную зону извне, от вторичного прибора. Это условие обеспечивает барьер искрозащиты ОВЕН ИСКРА.03. Барьер устанавливается во взрывобезопасной зоне и не позволяет превысить пороговые значения электрической цепи. Маркировка барьера ИСКРА.03 показана на рис. 2.

Из табл. 1 видно, что напряжение и ток искробезопасного датчика должны быть выше соответствующих параметров искробарьера. Только при таких условиях барьер обеспечивает взрывобезопасность датчика. При этом суммарные значения емкости и индуктивности соединения «датчик – кабель» не должны превышать максимальных выходных параметров искробарьера. Это необходимо для того, чтобы накопленная в реактивных компонентах (катушки индуктивности, конденсаторы и т.п.) энергия в случае короткого замыкания не вызвала искру, способную поджечь газовоздушную смесь.
Искробарьеры делятся на два класса: активные и пассивные.

Пассивный тип барьеров искрозащиты

Пассивные или шунт-диодные искробарьеры включают так называемые диоды Зенера D (стабилитроны), резисторы R и плавкие предохранители F (рис. 3). При возникновении опасной ситуации (например, скачка напряжения на входе барьера) стабилитроны D открываются и сбрасывают излишки напряжения на землю. Предохранитель F защищает барьер от повреждения, резистор R ограничивает ток в цепи. Совместная работа этих элементов гарантирует невозможность превышения тока и напряжения в цепи выше Io и Uo. В конструкцию барьера могут быть заложены 1, 2 или 3 стабилитрона, их количество влияет на уровень искробезопасности.

Пассивные искробарьеры могут быть трех уровней искробезопасности:

Преимущества пассивных искробарьеров:

Особенности пассивных искробарьеров:

ОВЕН ИСКРА.03 относится к пассивным искробарьерам с классом взрывозащиты «ia».

Активный тип барьеров искрозащиты

Принципиальное отличие активных барьеров от пассивных заключается в том, что активный барьер имеет в своем составе активные полупроводниковые элементы, которые обеспечивают питание датчика с ограниченными параметрами по току и напряжению, позволяют выдавать/принимать сигналы и преобразовывать их в унифицированные (4…20 мА) и т.д.
Современные активные барьеры имеют гальваническую развязку между цепью датчика и цепью связанного оборудования, находящегося во взрывобезопасной зоне. Гальваническая развязка означает, что датчик, находящийся во взрывоопасной зоне, и контроллер, находящийся в безопасной зоне, не имеют непосредственного электрического контакта. Цепи с гальванической развязкой являются самыми безопасными и помехозащищенными.
Активные барьеры включают в себя пассивный барьер со средствами развязки (транзисторные оптопары или трансформаторы), преобразователи сигнала и т.д. (рис. 4).

Преимущества активных барьеров:

Слабые места активных барьеров:

В ассортименте ОВЕН есть активный искробарьер – НПТ-1К.Ех.

© Автоматизация и Производство, 2021. Все права защищены. Любое использование материалов допускается только с согласия редакции. За достоверность сведений, представленных в журнале, ответственность несут авторы статей.

Издание зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций. Свидетельство о регистрации средств массовой информации ПИ № ФС77-68720.

Источник

Что такое барьер искрозащиты и как он работает

Барьером искрозащиты или барьером искробезопасности называется электронное защитное устройство (часто имеющее модульную конструкцию), устанавливаемое последовательно в цепь между искроопасной и искробезопасной зонами предприятия, проще говоря — между зоной взрывоопасной и взрывобезопасной.

Барьер искрозащиты для чего нужен

В целом у данных блоков можно выделить ряд достоинств: они универсальны, недороги, просты в установке, имеют малые габариты и простую модульную конструкцию, удобную для плотного монтажа на DIN-рейку.

Из относительных недостатков: необходимость надежного заземления цепи, ограниченное максимальное рабочее напряжение, защищаемое оборудование обязано быть само качественно изолировано от земли.

Тем не менее, невзирая на кажущуюся прихотливость, барьер искрозащиты представляет собой отличное средство, позволяющее недорого, негромоздко, при этом надежно, защитить оборудование от искр электрической природы. Далее станет ясно, почему.

Взглянув на схему барьера искрозащиты, легко видеть, что устройство это довольно простое. Оно содержит в качестве главных элементов шунтирующие стабилитроны (или один стабилитрон), к которым последовательно присоединен с одной стороны балластный резистор, а с другой — обычный плавкий предохранитель. Это так называемый шунт-стабилитронный искрозащитный барьер.

Работает блок следующим образом. В обычном режиме работы оборудования стабилитроны закрыты, ток через них не течет, ибо напряжение на них еще не превысило напряжения пробоя.

Но в момент наступления аварийной ситуации в цепи, напряжение на стабилитронах тут же начинает превышать определенный предел — стабилитроны резко переходят в состояние проводимости (режим стабилизации) — начинают активно пропускать через себя ток, шунтируя цепь, предотвращая появление искры.

Барьеры искрозащиты, производимые в соответствии с ГОСТом Р 51330.10-99, широко применяются сегодня на предприятиях химической, нефтяной и газовой промышленностей, где крайне важно отсутствие искр любой природы.

Барьер искрозащиты для чего нужен

Барьер искрозащиты для чего нужен

Барьеры искрозащиты на шунтирующих стабилитронах были изобретены в конце 1950-х годов как раз с целью применения в контроллерах управления технологическими процессами для химической промышленности.

Мощные резисторы и стабилитроны, применяемые в современных блоках искрозащиты, позволяют уже сегодня снизить сопротивление барьеров на 24 вольта до менее чем 290 Ом, и тенденция направлена дальше в сторону уменьшения проходного сопротивления и увеличения мощности стабилитронов. Ограничение накладывается лишь приемлемыми габаритами и ценой изделий.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Принцип действия барьеров искробезопасности с гальванической развязкой

Барьер искрозащиты для чего нуженБарьер искрозащиты для чего нуженБарьер искрозащиты для чего нуженБарьер искрозащиты для чего нуженБарьер искрозащиты для чего нужен

Барьеры искрозащиты с гальванической развязкой – это активные барьеры с гальваническим разделением искроопасных и искробезопасных цепей.

Устройство и работу таких барьеров рассмотрим на примере ЭнИ-БИС-301-Ех-AI, предназначенного для подключения пассивных датчиков с выходным унифицированным токовым сигналом 4…20 мА (искробезопасная цепь), расположенных во взрывоопасной зоне, и преобразования данного сигнала в выходные сигналы 0…5, 0…20 или 4…20 мА (искроопасная цепь).

Барьер искробезопасности передает токовый сигнал из взрывоопасной зоны во взрывобезопасную.

Встроенный импульсный источник питает входные и выходные цепи барьера. Наличие гальванической развязки цепей снимает необходимость заземления прибора.

Барьер искрозащиты для чего нужен

Рисунок 1 — Работа барьера в штатном режиме

Барьер искрозащиты состоит из следующих узлов (рисунок 1):

Работа барьера при возникновении внештатной ситуации (попадания на вход барьера искроопасного напряжения) представлена на рисунке 2.

Барьер искрозащиты для чего нужен

Рисунок 2 — Работа барьера в аварийном режиме

При возникновении аварийной ситуации по выходной цепи или цепи питания (в данном примере попадание высокого напряжения по цепи питания) гальваническая развязка (трансформатор T и оптопара AD) препятствуют прохождению высокого напряжения в искробезопасную цепь.

При возникновении аварийной ситуации в блоках 6 и 4 шунт-диодный барьер искрозащиты препятствует передачи во взрывоопасную зону опасного напряжения. Принцип действия шунт-диодный барьера подробно изложен в здесь.

Модельный ряд барьеров искрозащиты с гальванической развязкой производства ООО «Энергия-Источник»

Искробезопасная цепь Ех

ЭнИ-БИС-301-Ех-AI-1к[Ех iа Ga] IIC/IIВ244…20 мА0…5, 0…20, 4…20 мАЭнИ-БИС-302-Ех-AI-1кЭнИ-БИС-310-Ех-DI-1к24 или 36сигнал NAMUR, дискретный сигнал до 5 кГцдискретный сигнал до 5 кГцЭнИ-БИС-3101-Ех-DIЭнИ-БИС-3110-Ех-DIЭнИ-БИС-3120-Ех-DIсигнал NAMUR, дискретный сигнал до 50 кГцсигнал NAMUR, дискретный сигнал до 50 кГцЭнИ-БИС-320-Ех-AI-1к-Н4…20 мА/HART4…20 мА/HARTЭнИ-БИС-3201-Ех-АIЭнИ-БИС-3210-Ех-АIЭнИ-БИС-3220-Ех-АI0…20, 4…20 мА/HART0…20, 4…20 мА/HARTЭнИ-БИС-3230-Ех-АIЭнИ-БИС-3401-Ex-RS-1к[Ех ib Gb] IIC/IIВинтерфейсы
RS-422, RS-485интерфейсы
RS-422, RS-485

Наши специалисты по техподдержке готовы ответить на ваши вопросы и подобрать для вас барьер искробезопасности.

Обращайтесь по:

телефону (351) 751-23-42

Viber, WhatsApp: +7(922)011-41-53

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *